
Implementation of a continuous adjoint for topology

optimization of ducted flows

Carsten Othmer∗

Volkswagen AG, 38436 Wolfsburg, Germany

Eugene de Villiers†

Icon CG, London, W14 9DH, U.K.

Henry G. Weller‡

OpenCFD Ltd., Salfords, Surrey, RH1 5RG, U.K.

Topology optimization of fluid dynamical systems is still in its infancy, with its first
academic realizations dating back to as late as four years ago. In this paper, we present an
approach to fluid dynamic topology optimization that is based on a continuous adjoint. We
briefly introduce the theory underlying the computation of topological sensitivity maps,
discuss our implementation of this methodology into the professional CFD solver Open-
FOAM and present first results obtained for the optimization of ducted flows wrt. dissipated
power.

I. Fluid dynamic topology optimization

In structure mechanics, topology optimization is a well-established concept for design optimization with
respect to tension or stiffness.1 Its transfer to computational fluid dynamics, however, just began four years
ago with the pioneering work of Borrvall and Petersson.2 Since then, this topic has received quite some
interest both in academia and in the industry3−7.

The starting point for fluid dynamic topology optimization is a volume mesh of the entire installation
space. Based on a computation of the flow solution inside this domain, a suitable local criterion is applied
to decide whether a fluid cell is “good” or “bad” for the flow in terms of the chosen cost function. In
order to iteratively remove the identified bad cells from the fluid domain, they are either punished via a
momentum loss term, or holes are inserted into the flow domain, with their positions being determined from
an evaluation of the so-called topological asymptotic.

In the former case, the momentum loss term is usually realized via a finite cell porosity, i. e. the whole
design domain is treated as a porous medium: Each cell is assigned an individual porosity αi, which is
modeled via Darcy’s law. The value of αi determines if the cell is fluid-like (low porosity values) or has a
rather solid character (high values of αi). In other words, the porosity field controls the geometry, and the
αi are the actual design variables.

With such a setting, an adjoint method can be applied to elegantly compute the sensitivities of the chosen
cost function wrt. the porosity of each cell. The obtained sensitivities can then be fed into a gradient-based
optimization algorithm – possibly with some penalization of intermediate porosity values in order to enforce a
“digital” porosity distribution, and after several iterations, the desired optimum topology is finally extracted
as an isosurface of the obtained porosity distribution or simply as the collection of all non-porous cells.

In a recent study, Othmer et al.7 were able to verify the applicability of this methodology to typical
automotive objective functions, including dissipated power, equal mass flow through different outlets, flow
uniformity and angular momentum of the flow in the outlet plane. In that proof-of-concept study, Automatic
Differentiation techniques were applied to an academic CFD code in order to obtain a discrete adjoint solver.
For industrial-sized problems, however, this code is not suitable. Therefore, we implemented the methodology
via a continuous adjoint into the professional CFD environment OpenFOAM.8 The underlying equations and

∗Development Engineer, Numerical Analysis Dept.
†Consultant Engineer, Open Source Simulation Services.
‡Lead Programmer, OpenFOAM Development

1 of 5

American Institute of Aeronautics and Astronautics



their implementation will be presented in the following sections, before we present examples of topological
sensitivity maps for an air duct segment.

II. Computation of topological sensitivity maps: theory

If J stands for the cost function to be minimized, the optimization problem can be stated as follows:

minimize J = J(α,v, p) subject to R(α,v, p) = 0 , (1)

where α represent the design variables, i. e. the porosity distribution, and v and p stand for velocity and
pressure, respectively. R = (R1, R2, R3, R4)T denotes the state equations, in our case the incompressible,
steady-state Navier-Stokes equations:

(R1, R2, R3)T = (v · ∇)v +∇p−∇ ·
(
2νD(v)

)
+ αv (2)

R4 = −∇ · v , (3)

with kinematic viscosity ν and the rate of strain tensor D(v) = ∇v + (∇v)T . The essential component for
the topology optimization methodology is the the Darcy term αv.

We thus have a constrained optimization problem, with the constraints being the state equations. Such
problems are commonly tackled by introducing a Lagrange function L and reformulating the cost function
as

L := J +
∫
Ω

(u, q)R dΩ , (4)

where we have introduced the adjoint velocity u and the adjoint pressure q as Lagrange multipliers.
The first objective function of our implementation is the power dissipated by the fluid dynamic device. It

can be computed as the net inward flux of energy, in our case total pressure, through the device boundaries:

J = −
∫
Γ

dΓ (p + v2/2)v · n . (5)

This objective function involves only an integral over the outer surface of the flow domain and has no
volume contribution from the domain itself. In such cases the adoint partial differential equations read:

−2D(u)v = −∇q +∇ ·
(
2νD(u)

)
− αu (6)

∇ · u = 0 . (7)

These are the equations that have to be implemented into the CFD solver, alongside with appropriate
boundary conditions that depend on the chosen cost function. If u and q are then chosen to satisfy the
adjoint equation system, the desired sensitivities can be computed according to Eqn. (4) as

∂L

∂αi
=

∂J

∂αi
+

∫
Ω

(u, q)
∂R
∂αi

dΩ , (8)

where ∂L/∂αi is the sensitivity of the cost function wrt. the porosity αi of cell i. For the topology optimization
methodology, the porosity is just an auxiliary variable to describe a continuous transition from fluid to solid.
Therefore, there is no explicit dependence of the cost function on the porosity: ∂J/∂αi = 0. Furthermore, as
the porosity αi enters the primal equation system only in cell i and only via the Darcy term, we can write

∂R
∂αi

=
(v

0

)
χi (9)

with χi being the characteristic function of cell i. Hence, according to Eqn. (8), we can finally compute the
desired sensitivity for each cell as the scalar product of adjoint and primal velocity times the cell volume:

∂L

∂αi
= ui · vi Vi . (10)

2 of 5

American Institute of Aeronautics and Astronautics



III. Solver implementation

OpenFOAM (Open Field Operation And Manipulation) is a CFD toolbox that can be used to simulate
a broad range of physical problems. The code was chosen as the development environment for the topology
optimiser due partially to its open source (GNU General Public Licence – GPL) and therefore transparent
nature, but primarily because of its high level symbolic application programming interface (API). The
flexibility of this interface allows for a straight forward implementation of the continuous adjoint, using
previously validated components that make up the other applications in the toolbox. Fig. 1 shows the source
code for the adjoint solver component of the topology optimisation tool.

Figure 1. Adjoint solver implementation in OpenFOAM.

The main symbols in Fig. 1 are defined as follows:

• phi - primal inter-cell volume flux

• phia - adjoint inter-cell volume flux

• q - adjoint pressure

• U - adjoint velocity

• V - primal velocity

where fluxes are calculated using the velocities from the previous iteration. Throughout ”fvm::” prefaces
implicit operators, while ”fvc::” denotes the explicit equivalent. The solver uses a segregated approach and a
SIMPLE-type algorithm to couple the adjoint velocities and pressure. Turbulence is assumed to be ”frozen”,
so that the primal turbulent viscosity can be re-used for the adjoint diffusion term.

The adjoint momentum predictor is constructed in lines 1-7. It consists of the negative convection of the
adjoint velocity by the primal (line 3). The next term (line 4), which describes the dot product of the adjoint
gradient with the primal velocity, has to be represented explicitly, since the dot product of the gradient creates
cross-coupling between the adjoint velocity components. The capability to solve cross-coupled equations is
not currently available in the code library.

Turbulent and laminar diffusion is handled via a plug-in module, in this case denoted by the “turbulence”
term which is previously defined. The final term in the momentum equation represents the effect of porosity

3 of 5

American Institute of Aeronautics and Astronautics



(alpha) used as a momentum sink in “bad” cells. The adjoint momentum is then solved by setting the
matrix equal to the adjoint pressure gradient (line 9).

The construction of the adjoint pressure equation (lines 17-20) requires an intermediate adjoint flux found
by dividing the right hand side of the Ueqn matrix (.H()) by the diagonal coefficient (.A()) (lines 11, 13 and
15). After the pressure has been solved the intermediate flux and velocity have to be updated so that they
obey continuity (lines 22 and 24).

In addition to solving the adjoint equations, routines are also required to derive the sensitivity of the
objective function to changes in porosity, to solve the primal equation system and to update the porosity.
Each objective function also requires specialised boundary conditions that have to be derived from the
governing equations. These additional steps will be described in the final paper.

IV. First applications

Fig. 2 illustrates the application of the developed adjoint code to a simple two-dimensional (2D) test
case with 100 × 100 Cartesian grid cells. At a Reynolds number of 1000 the flow enters the box through
an inlet on the South wall and leaves it through an outlet on the East wall. For the original flow field as
shown in Fig. 2a, the sensitivities of the “good” cells (i. e. those with positive sensitivities) and the “bad”
or counterproductive cells are displayed separately in Figs. 2b and c. As expected, the most important cells
for the flow passage lie along the main path, whereas the counterproductive cells are mostly located in the
backflow regions. Fig. 2d finally displays the flow field that was obtained after five unpenalized steepest
descent iterations of porosity update. It constitutes a cost function improvement of 25% as compared to the
original flow field.

(a) (b) (c) (d)

Figure 2. Application to a 2D example: (a) Initial velocity field, (b) sensitivities of “good” cells, (c) sensitivities of
“bad” cells, (d) velocity field after five iterations.

Figure 3. Sensitivities wrt. dissipated power for a segment of a Volkswagen air duct: The air enters the channel from
the left hand side at a Reynolds number of 2500. Hot and cold colours correspond to good and bad cells, respectively.
Isolines of zero sensitivity are shown in white.

4 of 5

American Institute of Aeronautics and Astronautics



As a 3D test case, we chose a segment of an air duct – a geometry that was well studied in previous works.9

Fig. 3 shows the sensitivities wrt. dissipated power for this channel segment. “Hot” colours correspond to
positive sensitivities, whereas the dark blue areas mark the counterproductive cells. The white contours are
the isolines of zero sensitivities, i. e. the borderline between “good” and “bad” cells. As could be expected
from physical reasoning, the counterproductive cells are located in the regions of detachment and backflow.
How sensitivity maps of this kind can be used to generate optimal designs of industrially relevant, complex
air duct geometries will be shown in the full paper.

V. Summary and Outlook

We have presented the theory underlying the computation of topological sensitivity maps and its imple-
mentation into the CFD environment OpenFOAM. While the full paper will contain examples of industrially
relevant, complex geometries, our first applications of the code to a 2D test case and a 3D air duct segment
already demonstrated the potential of the developed method.

Future work will be dedicated to an extension of the code towards other objective functions. For a large
variety of objective functions this involves only adaptations of the boundary conditions. Thanks to the
flexible high level symbolic application programming interface of OpenFOAM, such adaptations are straight
forward within the developed adjoint solver framework.

References

1M.P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer, Berlin, 2004.
2T. Borrvall and J. Petersson, Topology optimization of fluids in Stokes flow, Int. J. Num. Meth. Fluids, 41, p. 77, 2003.
3O. Sigmund, A. Gersborg-Hansen, and R.B. Haber, Topology optimization for multi-physics problems: A future FEMLAB

application?, Proc. Nordic MATLAB Conf. 2003, L. Gregersen (Ed.), Comsol A/S, Søborg, Denmark, p. 237, 2003.
4L.H. Olesen, F. Okkels, and H. Bruus, Topology optimization of Navier-Stokes flow in microfluidics, ECCOMAS 2004,

Jyväskylä, 2004.
5O. Moos, F.R. Klimetzek, and R. Rossmann, Bionic optimization of air-guiding systems, SAE 2004-01-1377, 2004.
6J.K. Guest and J.H. Prévost, Topology optimization of creeping flows using a Darcy-Stokes finite element, Int. J. Num.

Meth. Engng., 66 (3), p. 461, 2006.
7C. Othmer, Th. Kaminski, and R. Giering, Computation of topological sensitivities in fluid dynamics: Cost function

versatility, ECCOMAS CFD 2006, Delft, 2006.
8http://www.opencfd.co.uk/openfoam/www.opencfd.org
9C. Othmer and Th. Grahs, Approaches to fluid dynamic optimization in the car development process, EUROGEN 2005,

Munich, 2005.

5 of 5

American Institute of Aeronautics and Astronautics


